[1] 刘晓璐.水稻胚乳垩白形成机制的生理生化与转录组水平解析[D]. 北京:中国农业科学院,2010.
[2] 莫惠栋. 谷类作物胚乳性状遗传控制的鉴别[J]. 遗传学报,1995,22(2):126-132.
[3] 孙成效,段彬伍,谢黎虹,等. 利用近红外透射光谱技术同步测定糙米的多项品质指标初报[J]. 中国水稻科学,2006,20(4):451-454.
[4] TIAN Z, QIAN Q, LIU Q, et al. Allelic diversities in rice starch biosynthesis lead to a diverse array of rice eating and cooking qualities[J]. Proc Nat Acad Sci USA, 2009, 106(51): 21 760-21 765.
[5] BAI A, LU X, LI D, et al. NF-YB1-regulated expression of sucrose transporters in aleurone facilitates sugar loading to rice endosperm[J]. Cell Res, 2016, 26(3): 384-388.
[6] CAKIR B, SHIRAISHI S, TUNCEL A, et al. Analysis of the Rice ADP-glucose transporter (OsBT1) indicates the presence of regulatory processes in the amyloplast stroma that control ADP-glucose flux into starch[J]. Plant Physiol, 2016, 170(3): 1 271 -1 283.
[7] PENG C, WANG Y, LIU F, et al. FLOURY ENDOSPERM6 encodes a CBM48 domain‐containing protein involved in compound granule formation and starch synthesis in rice endosperm[J]. Plant J, 2014, 77(6): 917-930.
[8] ZHOU H, WANG L, LIU G, et al. Critical roles of soluble starch synthase SSIIIa and granule-bound starch synthase Waxy in synthesizing resistant starch in rice[J]. Proc Natl Acad Sci USA, 2016, 113(45): 12 844-12 849.
[9] SINGH N, INOUCHI N, NISHINARI K, et al. Morphological, structural, thermal, and rheological characteristics of starches separated from apples of different cultivars[J]. J Agric Food Chem, 2005, 53(26): 10 193-10 199.
[10] FUJITA N, YOSHIKO T, YOSINORI U, et al. Characterization of pullulanase (PUL)-deficient mutants of rice (Oryza sativa L.) and the function of PUL on starch biosynthesis in the developing rice endosperm[J]. J Exp Bot, 2009, 60(3): 1 009-1 023.
[11] LI Q, ZHANG G, DONG Z, et al. Characterization of expression of the OsPUL gene encoding a pullulanase-type debranching enzyme during seed development and germination in rice.[J]. Plant Physiol Biochem, 2009, 47(5): 351-358.
[12] CHEN B, GILBERT L A, CIMINI B A, et al. Dynamic imaging of genomic loci in living human cells by an optimized CRISPRCas system[J]. Cell, 2013, 155(7): 1 479-1 491.
[13] DOUDNA J A, CHARPENTIER E. The new frontier of genome engineering with CRISPRCas9[J]. Science, 2014, 346(6 213): 1 258 096 -1 258 096.
[14] XIAO A, WANG Z, HU Y, et al. Chromosomal deletions and inversions mediated by TALENs and CRISPR/Cas in zebrafish[J]. Nucleic Acids Res, 2013, 41(14): e141-
[15] GUILINGER J P, THOMPSON D B, LIU D R, et al. Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification[J]. Nat Biotechnol, 2014, 32(6): 577-582.
[16] FAN C, YU S, WANG C, et al. A causal C-A mutation in the second exon of GS3 highly associated with rice grain length and validated as a functional marker.[J]. Theor Appl Genet, 2009, 118(3): 465-472.
[17] XIE K, YANG Y. RNA-guided genome editing in plants using a CRISPR-Cas system[J]. Mol Plant, 2013, 6(6): 1 975-1 983.
[18] XIE K, ZHANG J, YANG Y, et al. Genome-wide prediction of highly specific guide RNA spacers for CRISPR/Cas 9-mediated genome editing in model plants and major crops[J]. Mol Plant, 2014, 7(5): 923-926.
[19] KWEON M, SLADE L, LEVINE H, et al. Role of glassy and crystalline transitions in the responses of corn starches to heat and high pressure treatments: prediction of solute-induced barostabilty from solute-induced thermostability[J]. Carbohydrate Polymers, 2008, 72(2): 293-299.
[20] WENG J, GU S, WAN X, et al. Isolation and initial characterization of GW5, a major QTL associated with rice grain width and weight[J]. Cell Res, 2008, 18(12): 1199-1209.
[21] WANG Y, XIONG G, HU J, et al. Copy number variation at the GL7 locus contributes to grain size diversity in rice[J]. Nat Genet, 2015, 47(8).
[22] MAO H, SUN S, YAO J, et al. Linking differential domain functions of the GS3 protein to natural variation of grain size in rice[J]. Proc Natl Acad Sci USA, 2010, 107(45): 19 579-19 584.
[23] WANG S, LI S W, LIU Q, et al. The OsSPL16-GW7 regulatory module determines grain shape and simultaneously improves rice yield and grain quality[J]. Nat Genet, 2015, 47(8).
[24] LI Y B, FAN C, XING Y, et al. Chalk 5 encodes a vacuolar H+-translocating pyrophosphatase influencing grain chalkiness in rice[J]. Nat Genet, 2014, 46(4): 398-404. |